

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1,3-Bis(2,6-diisopropylphenyl)-1Himidazol-3-ium bromide dichloromethane disolvate

#### Matthias Berger, Norbert Auner, Tanja Sinke and Michael Bolte\*

Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 10 May 2012; accepted 16 May 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.038; wR factor = 0.090; data-toparameter ratio = 16.2.

In the title compound,  $C_{27}H_{37}N_2^+ \cdot Br^- \cdot 2CH_2Cl_2$ , both the cation and the anion are located on a crystallographic mirror plane. Both of the dichloromethane solvent molecules show a disorder across a mirror plane over two equally occupied positions. In the crystal, the cations are connnected to the bromide ions via C-H···Br hydrogen bonds.

#### **Related literature**

For the preparation of imidazolium salts, see: Arduengo et al. (1995, 1999); Hintermann (2007). For structures with the same cation but different anions, see: Stasch et al. (2004); Blue et al. (2006); Berger et al. (2012). For compounds with the 1,3-bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile et al. (2010); Giffin et al. (2010).



#### **Experimental**

Crystal data  $C_{27}H_{37}N_2^+ \cdot Br^- \cdot 2CH_2Cl_2$ 

 $M_r = 639.35$ 

 $2\sigma(I)$ 

| Monoclinic, $P2_1/m$<br>a = 9.1874 (8) Å<br>b = 16.5165 (12) Å<br>c = 11.030 (1) Å<br>$\beta = 102.332$ (7)°<br>V = 1635.1 (2) Å <sup>3</sup>                                    | Z = 2<br>Mo K $\alpha$ radiation<br>$\mu = 1.60 \text{ mm}^{-1}$<br>T = 173  K<br>$0.52 \times 0.28 \times 0.24 \text{ mm}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                  |                                                                                                                             |
| Stoe IPDS II two-circle<br>diffractometer<br>Absorption correction: multi-scan<br>( <i>MULABS</i> ; Spek, 2009;<br>Blessing, 1995)<br>$T_{\rm min} = 0.489, T_{\rm max} = 0.700$ | 20988 measured reflections<br>3200 independent reflections<br>2867 reflections with $I > 2\sigma(R_{int} = 0.084)$          |
| Refinement                                                                                                                                                                       |                                                                                                                             |

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 197 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.090$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3200 reflections                | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------|------|-------------------------|--------------|--------------------------------------|
| C1-H1···Br1      | 0.95 | 2.59                    | 3.538 (3)    | 175                                  |

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5272).

#### References

- Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.
- Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.
- Berger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, 01844.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Blue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988-5993.
- Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090o2091.
- Hintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. doi:10.1186/1860-5397-3-22
- Ikhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, 03121.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stasch, A., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2004). Eur. J. Inorg. Chem. pp. 4052-4055.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

# supplementary materials

Acta Cryst. (2012). E68, o1845 [doi:10.1107/S1600536812022246]

# 1,3-Bis(2,6-diisopropylphenyl)-1*H*-imidazol-3-ium bromide dichloromethane disolvate

# Matthias Berger, Norbert Auner, Tanja Sinke and Michael Bolte

#### Comment

Imidazolium salts are precursors for the synthesis of N-heterocyclic carbenes (NHC) and can be prepared according to Arduengo *et al.* (1995, 1999) and Hintermann (2007). Deprotonation by strong bases gives the free stable NHC, which is widely used as ligands.

The title compound crystallizes with discrete cations, anions and solvent dichloromethane molecules. Both cations and anions are located on a crystallographic mirror plane. Both dichloromethane molecules show a disorder across a mirror plane over two equally occupied positions. The Br anions are connnected to the cations *via* C—H···Br hydrogen bonds. Structures with the same cation, but with different anions and solvent molecules, have been determined by Stasch *et al.* (2004), Blue *et al.* (2006) and Berger *et al.* (2012). For compounds with 1,3-bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile *et al.* (2010) and Giffin *et al.* (2010).

#### Experimental

1,3-Bis(2,6-di-isopropylphenyl)1*H*-imidazol-3-ium bromide chloroform disolvate was prepared by reacting 167 mg of 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2*H*-imidazol-2-ylidene with 115 mg of  $Si_2Br_6$  in deuterated dichloromethane. After two weeks at 253 K colorless needles of the title compound crystallized in the NMR-Tube.

## Refinement

H atoms were refined using a riding model, with C—H ranging from 0.95 Å to 1.00 Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ .

## **Computing details**

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA* (Stoe & Cie, 2001); data reduction: *X-AREA* (Stoe & Cie, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



## Figure 1

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding and dichloromethane molecules are omitted for clarity. Atoms labelled with suffix A were generated by the symmetry operator x, -y + 1/2, z.

### 1,3-Bis(2,6-diisopropylphenyl)-1*H*-imidazol-3-ium bromide dichloromethane disolvate

| Crystal data                                   |                                                                           |
|------------------------------------------------|---------------------------------------------------------------------------|
| $C_{27}H_{37}N_2^+ \cdot Br^- \cdot 2CH_2Cl_2$ | F(000) = 664                                                              |
| $M_r = 639.35$                                 | $D_{\rm x} = 1.299 {\rm Mg} {\rm m}^{-3}$                                 |
| Monoclinic, $P2_1/m$                           | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å                             |
| Hall symbol: -P 2yb                            | Cell parameters from 19135 reflections                                    |
| a = 9.1874 (8) Å                               | $\theta = 3.4 - 26.0^{\circ}$                                             |
| b = 16.5165 (12)  Å                            | $\mu = 1.60 \text{ mm}^{-1}$                                              |
| c = 11.030 (1)  Å                              | T = 173  K                                                                |
| $\beta = 102.332 \ (7)^{\circ}$                | Plate, colourless                                                         |
| $V = 1635.1 (2) \text{ Å}^3$                   | $0.52 \times 0.28 \times 0.24 \text{ mm}$                                 |
| Z = 2                                          |                                                                           |
| Data collection                                |                                                                           |
| Stoe IPDS II two-circle                        | 20988 measured reflections                                                |
| diffractometer                                 | 3200 independent reflections                                              |
| Radiation source: Genix 3D IµS microfocus X-   | 2867 reflections with $I > 2\sigma(I)$                                    |
| ray source                                     | $R_{\rm int} = 0.084$                                                     |
| Genix 3D multilayer optics monochromator       | $\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$ |
| $\omega$ scans                                 | $h = -11 \rightarrow 11$                                                  |
| Absorption correction: multi-scan              | $k = -19 \rightarrow 20$                                                  |
| (MULABS; Spek, 2009; Blessing, 1995)           | $l = -13 \rightarrow 13$                                                  |
| $T_{\min} = 0.489, \ T_{\max} = 0.700$         |                                                                           |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
|-------------------------------------------------|-------------------------------------------------------|
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.090$                               | neighbouring sites                                    |
| S = 1.03                                        | H-atom parameters constrained                         |
| 3200 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 0.9357P]$      |
| 197 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.43 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{ m min}$ = -0.36 e Å <sup>-3</sup>       |
|                                                 |                                                       |

#### Special details

#### Experimental.;

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| NI  | 0.29660 (18) | 0.18481 (10) | 0.41051 (15) | 0.0255 (4)                  |           |
| C1  | 0.2134 (3)   | 0.2500       | 0.4158 (3)   | 0.0241 (6)                  |           |
| H1  | 0.1119       | 0.2500       | 0.4222       | 0.029*                      |           |
| C2  | 0.4378 (2)   | 0.20927 (14) | 0.4033 (2)   | 0.0313 (5)                  |           |
| H2  | 0.5197       | 0.1751       | 0.3992       | 0.038*                      |           |
| C3  | 0.1307 (3)   | 0.11525 (15) | 0.1796 (2)   | 0.0440 (6)                  |           |
| Н3  | 0.1846       | 0.1682       | 0.1925       | 0.053*                      |           |
| C4  | -0.0359 (4)  | 0.1327 (2)   | 0.1415 (3)   | 0.0594 (8)                  |           |
| H4A | -0.0567      | 0.1626       | 0.0629       | 0.089*                      |           |
| H4B | -0.0669      | 0.1652       | 0.2059       | 0.089*                      |           |
| H4C | -0.0911      | 0.0815       | 0.1311       | 0.089*                      |           |
| C5  | 0.1838 (3)   | 0.0696 (2)   | 0.0773 (3)   | 0.0545 (7)                  |           |
| H5A | 0.1607       | 0.1012       | 0.0004       | 0.082*                      |           |
| H5B | 0.1333       | 0.0171       | 0.0640       | 0.082*                      |           |
| H5C | 0.2917       | 0.0611       | 0.1017       | 0.082*                      |           |
| C6  | 0.3631 (3)   | 0.09778 (16) | 0.6435 (2)   | 0.0394 (5)                  |           |
| Н6  | 0.4138       | 0.1470       | 0.6197       | 0.047*                      |           |
| C7  | 0.2619 (4)   | 0.1250 (3)   | 0.7253 (4)   | 0.0934 (15)                 |           |
| H7A | 0.1868       | 0.1621       | 0.6791       | 0.140*                      |           |
| H7B | 0.3203       | 0.1529       | 0.7980       | 0.140*                      |           |
| H7C | 0.2123       | 0.0779       | 0.7523       | 0.140*                      |           |
| C8  | 0.4824 (5)   | 0.0423 (3)   | 0.7119 (4)   | 0.1023 (17)                 |           |
| H8A | 0.5472       | 0.0256       | 0.6565       | 0.153*                      |           |
| H8B | 0.4361       | -0.0057      | 0.7401       | 0.153*                      |           |
| H8C | 0.5415       | 0.0707       | 0.7838       | 0.153*                      |           |

| Cl4  | 0.6535 (2)   | 0.27308 (11)  | 0.79502 (16) | 0.0803 (7)   | 0.50       |
|------|--------------|---------------|--------------|--------------|------------|
| C13  | 0.96814 (15) | 0.2500        | 0.81560 (13) | 0.0802 (4)   |            |
| H10B | 0.7760       | 0.1639        | 0.7438       | 0.077*       | 0.50       |
| H10A | 0.7776       | 0.2363        | 0.6475       | 0.077*       | 0.50       |
| C10  | 0.7893 (8)   | 0.2231 (4)    | 0.7366 (6)   | 0.0643 (18)  | 0.50       |
| Cl2′ | 0.4863 (16)  | 0.1966 (13)   | 0.0681 (6)   | 0.129 (7)    | 0.309 (13) |
| Cl2  | 0.4398 (9)   | 0.2500        | 0.0600 (7)   | 0.091 (3)    | 0.38 (3)   |
| Cl1  | 0.5757 (3)   | 0.3808 (3)    | 0.0739 (3)   | 0.1306 (12)  | 0.50       |
| H9D  | 0.6666       | 0.2661        | 0.1886       | 0.100*       | 0.191 (13) |
| H9C  | 0.6825       | 0.2561        | 0.0452       | 0.100*       | 0.191 (13) |
| H9B  | 0.6987       | 0.2657        | 0.0540       | 0.100*       | 0.309 (13) |
| H9A  | 0.6687       | 0.2735        | 0.1899       | 0.100*       | 0.309 (13) |
| С9   | 0.6207 (8)   | 0.2781 (5)    | 0.1008 (6)   | 0.083 (4)    | 0.50       |
| Br1  | -0.17082 (3) | 0.2500        | 0.41902 (3)  | 0.03239 (11) |            |
| C16  | 0.2761 (3)   | 0.06008 (14)  | 0.5248 (2)   | 0.0366 (5)   |            |
| H15  | 0.2401       | -0.0494       | 0.5978       | 0.060*       |            |
| C15  | 0.2209 (3)   | -0.01857 (16) | 0.5234 (3)   | 0.0500 (7)   |            |
| H14  | 0.1019       | -0.1057       | 0.4183       | 0.069*       |            |
| C14  | 0.1396 (4)   | -0.05222 (16) | 0.4166 (3)   | 0.0578 (8)   |            |
| H13  | 0.0559       | -0.0343       | 0.2342       | 0.064*       |            |
| C13  | 0.1118 (4)   | -0.00958 (16) | 0.3072 (3)   | 0.0531 (7)   |            |
| C12  | 0.1641 (3)   | 0.06934 (14)  | 0.3013 (2)   | 0.0382 (5)   |            |
| C11  | 0.2443 (2)   | 0.10184 (13)  | 0.4124 (2)   | 0.0317 (5)   |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|--------------|--------------|--------------|--------------|--------------|--------------|
| N1   | 0.0245 (9)   | 0.0254 (8)   | 0.0255 (8)   | 0.0012 (7)   | 0.0030 (7)   | -0.0009 (7)  |
| C1   | 0.0239 (14)  | 0.0225 (14)  | 0.0246 (14)  | 0.000        | 0.0022 (11)  | 0.000        |
| C2   | 0.0247 (10)  | 0.0374 (11)  | 0.0322 (11)  | 0.0053 (9)   | 0.0074 (8)   | -0.0019 (9)  |
| C3   | 0.0606 (16)  | 0.0333 (12)  | 0.0331 (12)  | -0.0058 (12) | -0.0012 (11) | -0.0042 (10) |
| C4   | 0.074 (2)    | 0.0622 (19)  | 0.0383 (14)  | 0.0213 (16)  | 0.0033 (13)  | -0.0042 (13) |
| C5   | 0.0549 (17)  | 0.0630 (18)  | 0.0446 (15)  | 0.0006 (15)  | 0.0085 (13)  | -0.0039 (14) |
| C6   | 0.0428 (13)  | 0.0418 (13)  | 0.0325 (12)  | 0.0040 (11)  | 0.0055 (10)  | 0.0051 (10)  |
| C7   | 0.057 (2)    | 0.142 (4)    | 0.081 (3)    | 0.000(2)     | 0.0153 (19)  | -0.065 (3)   |
| C8   | 0.100 (3)    | 0.100 (3)    | 0.080 (3)    | 0.056 (3)    | -0.042 (2)   | -0.025 (2)   |
| C11  | 0.0341 (12)  | 0.0226 (10)  | 0.0381 (12)  | 0.0013 (9)   | 0.0073 (9)   | -0.0009 (9)  |
| C12  | 0.0456 (14)  | 0.0276 (11)  | 0.0384 (12)  | -0.0020 (10) | 0.0025 (10)  | -0.0018 (10) |
| C13  | 0.071 (2)    | 0.0321 (13)  | 0.0501 (16)  | -0.0120 (13) | 0.0003 (14)  | -0.0050 (12) |
| C14  | 0.081 (2)    | 0.0268 (13)  | 0.0620 (18)  | -0.0124 (13) | 0.0074 (16)  | 0.0036 (12)  |
| C15  | 0.0673 (19)  | 0.0345 (13)  | 0.0484 (15)  | -0.0004 (13) | 0.0128 (14)  | 0.0118 (11)  |
| C16  | 0.0396 (13)  | 0.0321 (12)  | 0.0381 (12)  | 0.0050 (10)  | 0.0082 (10)  | 0.0048 (10)  |
| Br1  | 0.02843 (17) | 0.03733 (18) | 0.03321 (18) | 0.000        | 0.01058 (12) | 0.000        |
| C9   | 0.056 (3)    | 0.148 (12)   | 0.041 (3)    | -0.028 (4)   | -0.003 (2)   | -0.009 (4)   |
| Cl1  | 0.0784 (17)  | 0.170 (3)    | 0.129 (2)    | 0.0489 (19)  | -0.0110 (16) | -0.020 (2)   |
| Cl2  | 0.068 (3)    | 0.144 (9)    | 0.063 (3)    | 0.000        | 0.019 (2)    | 0.000        |
| Cl2′ | 0.094 (7)    | 0.234 (17)   | 0.063 (2)    | -0.100 (10)  | 0.024 (3)    | -0.035 (5)   |
| C10  | 0.084 (4)    | 0.064 (4)    | 0.056 (3)    | -0.011 (3)   | 0.039 (3)    | -0.015 (3)   |
| C13  | 0.0666 (8)   | 0.1076 (11)  | 0.0723 (8)   | 0.000        | 0.0278 (6)   | 0.000        |

| Cl4                | 0.0721 (10)                 | 0.099 (2) | 0.0690 (9) | 0.0362 (10)            | 0.0134 (8) | -0.0046 (9) |  |  |
|--------------------|-----------------------------|-----------|------------|------------------------|------------|-------------|--|--|
| Geome              | Geometric parameters (Å, °) |           |            |                        |            |             |  |  |
| N1—C               | 21                          | 1.329 (2) |            | C11—C12                |            | 1.395 (3)   |  |  |
| N1—C               | 2                           | 1.377 (3) |            | C12—C13                |            | 1.396 (4)   |  |  |
| N1—C               | 11                          | 1.454 (3) |            | C13—C14                |            | 1.373 (4)   |  |  |
| C1—N               | 1 <sup>i</sup>              | 1.329 (2) |            | С13—Н13                |            | 0.9500      |  |  |
| С1—Н               | 1                           | 0.9500    |            | C14—C15                |            | 1.371 (4)   |  |  |
| С2—С               | 2 <sup>i</sup>              | 1.346 (5) |            | C14—H14                |            | 0.9500      |  |  |
| С2—Н               | 2                           | 0.9500    |            | C15—C16                |            | 1.393 (4)   |  |  |
| С3—С               | 12                          | 1.515 (3) |            | C15—H15                |            | 0.9500      |  |  |
| С3—С               | 5                           | 1.521 (4) |            | C9—Cl2                 |            | 1.691 (10)  |  |  |
| С3—С               | 4                           | 1.525 (4) |            | C9—Cl1                 |            | 1.757 (10)  |  |  |
| С3—Н               | 3                           | 1.0000    |            | C9—Cl2′                |            | 1.810 (11)  |  |  |
| С4—Н               | 4A                          | 0.9800    |            | С9—Н9А                 |            | 0.9900      |  |  |
| С4—Н               | 4B                          | 0.9800    |            | С9—Н9В                 |            | 0.9900      |  |  |
| С4—Н               | 4C                          | 0.9800    |            | С9—Н9С                 |            | 0.9900      |  |  |
| С5—Н               | 5A                          | 0.9800    |            | C9—H9D                 |            | 0.9900      |  |  |
| С5—Н               | 5B                          | 0.9800    |            | Cl1—Cl2'i              |            | 1.51 (3)    |  |  |
| С5—Н               | 5C                          | 0.9800    |            | Cl2—C9 <sup>i</sup>    |            | 1.691 (10)  |  |  |
| С6—С               | 7                           | 1.496 (4) |            | Cl2′—C9 <sup>i</sup>   |            | 1.280 (11)  |  |  |
| С6—С               | 8                           | 1.503 (4) |            | Cl2′—Cl1 <sup>i</sup>  |            | 1.51 (3)    |  |  |
| С6—С               | 16                          | 1.514 (3) |            | Cl2′—Cl2′ <sup>i</sup> |            | 1.76 (4)    |  |  |
| С6—Н               | 6                           | 1.0000    |            | C10—Cl4                |            | 1.731 (6)   |  |  |
| С7—Н               | 7A                          | 0.9800    |            | C10—Cl3                |            | 1.745 (7)   |  |  |
| С7—Н               | 7B                          | 0.9800    |            | C10—H10A               |            | 0.9900      |  |  |
| С7—Н               | 7C                          | 0.9800    |            | C10—H10B               |            | 0.9900      |  |  |
| С8—Н               | 8A                          | 0.9800    |            | Cl3—C10 <sup>i</sup>   |            | 1.745 (7)   |  |  |
| С8—Н               | 8B                          | 0.9800    |            | Cl4—Cl4 <sup>i</sup>   |            | 0.763 (4)   |  |  |
| С8—Н               | 8C                          | 0.9800    |            | Cl4—C10 <sup>i</sup>   |            | 1.523 (6)   |  |  |
| C11—               | C16                         | 1.394 (3) |            |                        |            |             |  |  |
| C1—N               | 1—C2                        | 108.82 (1 | 8)         | H8A—C8—H8C             |            | 109.5       |  |  |
| C1—N               | 1—C11                       | 124.62 (1 | 8)         | H8B—C8—H8C             |            | 109.5       |  |  |
| C2—N               | 1—C11                       | 126.56 (1 | 8)         | C16—C11—C12            |            | 124.2 (2)   |  |  |
| N1 <sup>i</sup> —C | C1—N1                       | 108.2 (3) |            | C16—C11—N1             |            | 118.2 (2)   |  |  |
| N1 <sup>i</sup> —C | С1—Н1                       | 125.9     |            | C12—C11—N1             |            | 117.7 (2)   |  |  |
| N1—C               | 1—H1                        | 125.9     |            | C11—C12—C13            |            | 116.2 (2)   |  |  |
| C2 <sup>i</sup> —C | C2—N1                       | 107.06 (1 | 2)         | C11—C12—C3             |            | 123.7 (2)   |  |  |
| C2 <sup>i</sup> —C | 22—Н2                       | 126.5     |            | C13—C12—C3             |            | 120.1 (2)   |  |  |
| N1—C               | 2—H2                        | 126.5     |            | C14—C13—C12            |            | 121.2 (3)   |  |  |
| C12—               | С3—С5                       | 111.9 (2) |            | C14—C13—H13            |            | 119.4       |  |  |
| C12—               | C3—C4                       | 109.9 (2) |            | С12—С13—Н13            |            | 119.4       |  |  |
| С5—С               | 3—C4                        | 110.6 (2) |            | C15—C14—C13            |            | 120.8 (2)   |  |  |
| C12—               | С3—Н3                       | 108.1     |            | C15—C14—H14            |            | 119.6       |  |  |
| С5—С               | 3—Н3                        | 108.1     |            | C13—C14—H14            |            | 119.6       |  |  |
| C4—C               | 3—Н3                        | 108.1     |            | C14—C15—C16            |            | 121.2 (2)   |  |  |
| С3—С               | 4—H4A                       | 109.5     |            | C14—C15—H15            |            | 119.4       |  |  |
| С3—С               | 4—H4B                       | 109.5     |            | C16—C15—H15            |            | 119.4       |  |  |

# supplementary materials

| H4A—C4—H4B                | 109.5        | C15—C16—C11                        | 116.4 (2)  |
|---------------------------|--------------|------------------------------------|------------|
| C3—C4—H4C                 | 109.5        | C15—C16—C6                         | 121.1 (2)  |
| H4A—C4—H4C                | 109.5        | C11—C16—C6                         | 122.5 (2)  |
| H4B—C4—H4C                | 109.5        | Cl2—C9—Cl1                         | 92.2 (4)   |
| С3—С5—Н5А                 | 109.5        | С12—С9—Н9А                         | 116.6      |
| С3—С5—Н5В                 | 109.5        | С11—С9—Н9А                         | 106.3      |
| H5A—C5—H5B                | 109.5        | Сl2′—С9—Н9А                        | 106.3      |
| С3—С5—Н5С                 | 109.5        | Cl2—C9—H9B                         | 125.7      |
| H5A—C5—H5C                | 109.5        | Cl1—C9—H9B                         | 106.3      |
| H5B—C5—H5C                | 109.5        | Cl2′—C9—H9B                        | 106.3      |
| C7—C6—C8                  | 111.2 (3)    | H9A—C9—H9B                         | 106.4      |
| C7—C6—C16                 | 111.3 (2)    | Cl2—C9—H9C                         | 113.3      |
| C8—C6—C16                 | 112.1 (2)    | Cl1—C9—H9C                         | 113.3      |
| С7—С6—Н6                  | 107.3        | Cl2—C9—H9D                         | 113.3      |
| С8—С6—Н6                  | 107.3        | Cl1—C9—H9D                         | 113.3      |
| С16—С6—Н6                 | 107.3        | Cl2′—C9—H9D                        | 100.2      |
| С6—С7—Н7А                 | 109.5        | H9C—C9—H9D                         | 110.6      |
| С6—С7—Н7В                 | 109.5        | Cl2′ <sup>i</sup> —Cl1—C9          | 45.3 (3)   |
| H7A—C7—H7B                | 109.5        | Cl1 <sup>i</sup> —Cl2′—C9          | 106.2 (9)  |
| С6—С7—Н7С                 | 109.5        | Cl4—C10—Cl3                        | 111.7 (3)  |
| H7A—C7—H7C                | 109.5        | Cl4—C10—H10A                       | 109.3      |
| H7B—C7—H7C                | 109.5        | Cl3—C10—H10A                       | 109.3      |
| C6—C8—H8A                 | 109.5        | Cl4—C10—H10B                       | 109.3      |
| C6—C8—H8B                 | 109.5        | Cl3—C10—H10B                       | 109.3      |
| H8A—C8—H8B                | 109.5        | H10A—C10—H10B                      | 107.9      |
| C6—C8—H8C                 | 109.5        |                                    |            |
|                           |              |                                    |            |
| C2-N1-C1-N1 <sup>i</sup>  | 0.8 (3)      | C12—C11—C16—C15                    | -0.9 (4)   |
| C11—N1—C1—N1 <sup>i</sup> | -179.28 (14) | N1-C11-C16-C15                     | 178.5 (2)  |
| $C1-N1-C2-C2^{i}$         | -0.50 (18)   | C12-C11-C16-C6                     | -179.8 (2) |
| $C11-N1-C2-C2^{i}$        | 179.60 (16)  | N1-C11-C16-C6                      | -0.4 (3)   |
| C1—N1—C11—C16             | -98.5 (3)    | C7—C6—C16—C15                      | -77.5 (4)  |
| C2—N1—C11—C16             | 81.4 (3)     | C8—C6—C16—C15                      | 47.7 (4)   |
| C1—N1—C11—C12             | 81.0 (3)     | C7—C6—C16—C11                      | 101.3 (3)  |
| C2—N1—C11—C12             | -99.1 (3)    | C8—C6—C16—C11                      | -133.5 (3) |
| C16—C11—C12—C13           | 1.2 (4)      | Cl2—C9—Cl1—Cl2 <sup><i>i</i></sup> | 2.7 (5)    |
| N1-C11-C12-C13            | -178.1 (2)   | Cl2'—C9—Cl1—Cl2' <sup>i</sup>      | 7.6 (4)    |
| C16—C11—C12—C3            | -179.8 (2)   | Cl1—C9—Cl2—C9 <sup>i</sup>         | 174.0 (2)  |
| N1—C11—C12—C3             | 0.8 (4)      | Cl2'-C9-Cl2-C9 <sup>i</sup>        | 1.6 (6)    |
| C5—C3—C12—C11             | 124.9 (3)    | Cl2—C9—Cl2′—C9 <sup>i</sup>        | -177.7 (8) |
| C4—C3—C12—C11             | -111.8 (3)   | Cl1—C9—Cl2′—C9 <sup>i</sup>        | 173.1 (2)  |
| C5—C3—C12—C13             | -56.2 (4)    | Cl2—C9—Cl2′—Cl1 <sup>i</sup>       | 175.3 (9)  |
| C4—C3—C12—C13             | 67.1 (3)     | Cl1-C9-Cl2'-Cl1 <sup>i</sup>       | 166.1 (5)  |
| C11—C12—C13—C14           | -0.5 (4)     | Cl2—C9—Cl2′—Cl2′i                  | 2.3 (8)    |
| C3—C12—C13—C14            | -179.5 (3)   | Cl1—C9—Cl2′—Cl2′i                  | -6.9 (2)   |
| C12—C13—C14—C15           | -0.6 (5)     | Cl4—C10—Cl3—C10 <sup>i</sup>       | -50.6 (3)  |
| C13—C14—C15—C16           | 0.9 (5)      | Cl3-Cl0-Cl4-Cl4 <sup>i</sup>       | -121.8 (4) |

# supplementary materials

| C14—C15—C16—C11                     | -0.2(4)   | Cl3—C10—Cl4—C10 <sup>i</sup> | 58.2 (4) |
|-------------------------------------|-----------|------------------------------|----------|
| Symmetry code: (i) $x, -y+1/2, z$ . | 1/8./ (3) |                              |          |

Hydrogen-bond geometry (Å, °)

| D—H···A     | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------|------|-------|-----------|-------------------------|
| C1—H1···Br1 | 0.95 | 2.59  | 3.538 (3) | 175                     |